MPP, ShmemPP:
Parallel Processing for
Sceptics

V. Balaji
SGI/GFDL

29 July 1998

In light of yesterday’s fiasco, I thought I'd begin with Leslie
Lamport’s definition of a distributed system:

A distributed system is one where your program crashes because
somewhere something happened to a computer that you never
even knew existed.

Overview

Different hardware models of parallelism: vector, PVP, MPP,
DSM

Programming models for different architectures

T3E examples of message passing programs

Why T3E programming is good for you

Further reading

Sequential computing

The von Neumann model of computing conceptualizes the com-
puter as consisting of a memory where instructions and data
are stored, and a processing unit where the computation takes
place. At each turn, we fetch an operator and its operands from

memory, perform the computation, and write the results back to
memory.

P - M

The speed of the computation is constrained by hardware limits:
the rate at which instructions and operands can be loaded from
memory, and results written back; and the speed of the process-

ing units. The overall computation rate is limited by the slower
of the two: memory.

Latency: time to find a word.

Bandwidth: number of words per unit time that can stream
through the pipe.

A processor clock period is currently ~ 2-4 ns, Moore's constant
is 4x /3 years.

DRAM latency is ~ 60 ns, Moore's constant is 1.3x /3 years.

Maximum memory bandwidth is theoretically the same as the
clock speed, but far less for commodity memory.

Furthermore, since memory and processors are built basically of
the same ‘“stuff”, there is no way to reverse this trend.

Within the raw physical limitations on processor and memory,
there are algorithmic and architectural ways to speed up compu-
tation. Most involve doing more than one thing at once.
e Overlap separate computations and/or memory operations.

— Pipelining.

— Multiple functional units.

— Overlap computation with memory operations.

— Re-use already fetched information: caching.

— Memory pipelining.

e Multiple computers sharing data.

The search for concurrency becomes a major element in the
design of algorithms (and libraries, and compilers). Concurrency
can be sought at different grain sizes.

Vector computing

Cray: if the same operation is independently performed on many
different operands, schedule the operands to stream through the
processing unit at a rate r = 1 per CP. Thus was born vector

processing.

do i = 1,n
a(i) = b(i) + c(3i) S
enddo

tioop = S 4+ rn

So long as the computations for each instance of the loop can be
concurrently scheduled, the work within the loop can be made
as complicated as one wishes.

The magic of vector computing is that for s > rn, t|5op =~ s for
any length n!

Of course in practice s depends on n if we consider the cost
of fetching n operands from memory and loading the vector
registers.

Vector machines tend to be expensive since they must use the
fastest memory technology available to use the full potential of
vector pipelining.

Real codes in general cannot be recast as a single loop of n
concurrent sequences of arithmetic operations. There is lots of
other stuff to be done (memory management, I/O, etc.) Since
sustained memory bandwidth requirements over an entire code
are somewhat lower, we can let multiple processors share the
bandwidth, and seek concurrency at a coarser grain size.

'mic$ DOALL private(j)
do j = 1,n

call ocean(j)

call atmos(j)
enddo

Since the language standards do not specify parallel constructs,
they are inserted through compiler directives.
10

Amdahl’s Law

Even a well-parallelized code will have some serial work, such as
initialization, I/O operations, etc. The time to execute a parallel
code on P processors is given by

t
tp = ts+% (1)
t1 1

S 2
tp s+ 152 (2)

where s = % is the serial fraction.

Speedup of a 5% serial code is at most 20.
11

Load-balancing

If the computational cost per instance of a parallel region un-
equal, the loop as a whole executes at the speed of the slowest
instance (implicit synchronization at the end of a parallel region).

Work must be partitioned in a way that keeps the load on each
parallel leg roughly equal.

If there is sufficient granularity (several instances of a parallel
loop per processor), this can be automatically accomplished by
implementing a global task queue.

12

Memory model for shared memory

Every variable has a scope: global or local.

parallelism

Writing to global
variables in a parallel region can result in a race condition.

Text

Static data

Shared stack

Shared heap

Local stack

Local heap

13

Race conditions

o
Il

O
Il

a

o
Il

a a=C a= a=C

a

The second and third case result in a race condition and unpre-
dictable results. The third case may be OK for certain reduction
or search operations, defined within a critical region.

'mic$ GUARD
a=a+b
Imic$ END GUARD
14

Shared memory parallelism with a flat or uniform memory model
does not scale to large numbers of processors, because (again)
of memory bandwidth. UMA memory access quickly runs out of
aggregate bandwidth.

Scalability: the number of processors you can usefully add to a
parallel system. It is also used to describe something like the
degree of coarse-grained concurrency in a code or an algorithm,
but this use is somewhat suspect, as this is almost always a
function of problem size.

15

Caches

The memory bandwidth bottleneck may be alleviated by the use
of caches.

Caches exploit temporal locality of memory access requests.
Memory latency is also somewhat obscured by exploiting spa-
tial locality as well: when a word is requested, adjacent words,
constituting a cache line, are fetched as well.

16

In a multi-processor environment, extra overhead is incurred to
maintain cache coherency.

Processor Processor

Cache Cache

Memory

17

To summarize:

UMA architectures suffer from a crisis of aggregate memory
bandwidth. The use of caches may alleviate the bandwidth prob-
lem, but require some form of communication between the dis-
joint members of the system: processors or caches.

This suggests dispensing with the UMA model altogether: mov-
ing toward a model where memory segments are themselves dis-
tributed and communicate over a network. This involves a rad-
ical change to the programming model, since there is no longer
a single address space in it. Instead communication between
disjoint regions must be explicit: message passing.

18

More recently, with the advent of fast cache-coherency tech-
niques, the single-address-space programming model has been
revived within the ccNUMA architectural model. Here memory
IS physically distributed, but logically shared. More on this later
if we have time.

19

Distributed Memory Systems: MPP

Processing elements (PEs), consisting of a processor and mem-
ory, are distributed across a network, and exchange data only as
required, by explicit send and receive.

20

Network Network

Tightly coupled systems: memory closer to network than pro-
Cessor.

LLoosely coupled systems: processor closer to network than mem-
ory.

LLoose coupling could include heterogeneous computing across a
LAN/WAN /Internet.

21

Network Topologies

Ring, hypercube, torus.

A torus provides scalable connectivity: an n-dimensional torus of
side p has p” PEs with a maximum distance of 3.

22

T3E: the canonical MPP supercomputer

The T3E is a tightly-coupled distributed memory supercomputer
with a 3D-torus low-latency high-speed interconnect, scalable to
a maximum of 2048 processors.

The memory hierarchy includes two levels of cache.

The processor is among the fastest available commodity pro-
cessors: the Dec Alpha (600 MHz clock latest). There are two
arithmetic processing units: allowing us to call it a T3E-1200.

A parallel job is granted p physically contiguous PEs when avail-
able. The job runs continously on these until done (no time-
sharing, swapping, etc.)

23

Your first T3E program

program test
print *, ’PE’, my_pe(), ’ says hello.’
if(my_pe().eq.0)print *, ’Total number of PEs is’, num_pes()

end

t3e 3% £f90 -W1"-X m" a.f90
t3e 4/, mpprun -n4 a.out

PE 2 says hello.

PE 3 says hello.

PE 1 says hello.

PE 0O says hello.

Total number of PEs is 4

24

Message passing

program test

integer :: right

right = my_pe()

call BARRIER()

call SHMEM_GET(right, right, 1, mod(my_pe()+1,num_pes()))

print *, ’PE’, my_pe(), ’ says hi to its neighbour on the right,’, right
end

t3e 67 f90 -W1"-X m" a.f90

t3e 7% mpprun -n4 a.out

PE 2 says hi to its neighbour on the right, 3
PE O says hi to its neighbour on the right, 1
PE 3 says hi to its neighbour on the right, O
PE 1 says hi to its neighbour on the right, 2

25

Communication and synchronization

The SHMEM library is written with a tightly-coupled MPP like
T3E in mind, where memory is close to the network. This per-
mits the PE wishing to get() or put() data to a remote PE to
proceed without interrupting the remote PE.

Requires a synchronization operation to make sure the trans-
mitted data is available for the operation. Synchronization is
effected with a barrier() call. On loosely-coupled systems bar-
riers can be very expensive, on T3E it is implemented in the
hardware and is extremely fast.

26

get () synchronization:
a = ...

call BARRIER()
call SHMEM_GET(a, a, 1, remote_PE)

put () synchronization:
call SHMEM_PUT(a, a, 1, remote_PE)

call BARRIER()
a= ...

put () returns control to the sender after initiating communica-
tion. get() is a blocking operation.

27

MPI: a commmunication model for

loosely-coupled systems

For a loosely-coupled or heterogeneous system, direct operations
to a remote memory cannot be permitted.

The communication model is a rendezvous.

call MPI_SEND(a, ..., to_pe, cee)
call MPI_RECV(b, ..., from_pe, ...)

There is now another level of latency — software latency — in
negotiating the communication.

28

Besides put(Os and get()s, the SHMEM library contains several
collective and global operations:

SHMEM_BROADCAST() , SHMEM_COLLECT() collective operations

SHMEM_SUM(), SHMEM_MAX(), SHMEM_AND(), ... global reductions
SHMEM_SWAP(), SHMEM_INC(), ... remote atomic operations
SHMEM_IXPUT(), SHMEM_IXGET(), ... strided gets and puts

Collective and global operations can be performed on a subset
of PEs as well.

29

Implementing a global sum

Sum the value of a on all PEs, every PE to have a copy of the
result. Simplest algorithm: gather on PE O, sum and broadcast.

program test
real :: a, sum
a = my_pe()
call BARRIER()
if (my_pe().EQ.0)then
sum = a
do n = 1,num_pes()-1
call SHMEM_GET(a, a, 1, n)
sum = sum + a
enddo
do n = 1,num_pes()-1
call SHMEM_PUT(sum, sum, 1, n)
enddo
endif
call BARRIER()
print *, ’sum=’, sum, ’ on PE’, my_pe()
end

30

t3e 257 £90 -W1"-X m" “/src/examples/sum_on_PEO.f90
t3e 26 mpprun -n4 a.out

sum= 6. on PE O

sum= 6. on PE 1

sum= 6. on PE 2

sum= 6. on PE 3

This algorithm on p processors involves 2p communications and
p summations, all sequential.

31

Here's another algorithm for doing the same thing: a binary
tree. It executes in logop steps, each step consisting of one
communication and one summation.

32

There are two ways to perform each step:

if (mod(pe,2).EQ.0)then !execute on even-numbered PEs
call SHMEM_GET(a, sum, 1, pe+l)
sum = sum + a
call SHMEM_PUT(sum, sum, 1, pe+l)

endif

if(mod(pe,2).EQ.0)then !execute on even-numbered PEs
call SHMEM_GET(a, sum, 1, pe+l)
sum = sum + a

else lexecute on odd—-numbered PEs
call SHMEM_GET(a, sum, 1, pe-1)
sum = sum + a

endif

The second is faster, even though a redundant computation is
performed.

33

SHMEMS in general require contiguous data or a regular stride.
dimension a(400,400), b(100,100), c(100,100,16)

call SHMEM_GET(a(101:200,101:200), a(101:200,101:200), 10000, remote_PE)

b = a(101:200,101:200)

call BARRIER()

call SHMEM_GET(b, b, 10000, remote_PE)
a(101:200,101:200) = b

call SHMEM_GET(c(1,1,6), c(1,1,6), 10000, remote_PE)

It is best to lay out data in suitable blocks.

34

Domain decomposition

IS replaced by

do j = js,je
do 1 = is,ie

(ni,nj)

(ie,je)

™

178

4]

g

.
49}

(1;

H
A4

35

Computational and data domains

do j = js,je
do 1 = is,ie
a(i,j) = ... + a(i-1,j+1) + ...

(ni,nj)

(e je)

(1;

IS
h g

36

The computational domain is the set of gridpoints that are
computed on a domain. The data domain is the set of grid-
points needs to be available on-processor to carry out the com-
putation.

The data domain may consist of a halo of a certain width, or it
might be global along an axis (e.g polar filter).

There is a f90 module available for those who are interested, that
has simple domain decomposition and communication interfaces.
It will provide a uniform interface to SHMEM and MPI calls for
communication. (MPI version is not quite ready.)

call mpp_define_domains(...)
call mpp_update_domains(...)
call mpp_transmit(...)

37

The overall model structure can be the same for both shared
memory and message passing codes, though algorithms may have
to change at some other (smaller) grain size.

call mpp define domains(...)

'mic$ DOALL private(j)

do j = 1,n
if(domain(j)%pe.NE.my pe())cycle
call ocean(j)
call atmos(j)

enddo

call mpp_update _domains(...)

38

Parallel 1/0O

“I/O certainly has been lagging in the last decade.” — Seymour
Cray, Public Lecture (1976).

“Also, I/O needs a lot of work.” — David Kuck, Keynote Address,
15th Annual Symposium on Computer Architecture (1988).

“I/O has been the orphan of computer architecture.” — Hen-
nessy and Patterson, Computer Architecture - A Quantitative
Approach. 2nd Ed. (1996).

The global FFIO layer for parallel I/O for the T3E appears to
be a correct formulation of the issue, but still needs work.

39

Why T3E programming is good for you

e T3E isthe canonical MPP. The programming model is textbook-
clean, and needs to be understood before more complicated
models are attempted.

e With a superlative interconnect, and hardware synchroniza-
tion, it is an ideal machine to cut your message-passing teeth
on. Many techniques of “defensive programming” for slower
networks and communication models can be avoided.

e Nice tools: Apprentice, Totalview.

e Nice on-site analysts.

40

Furthermore...

e T he hierarchical memory model is inescapable for the foresee-
able future. Algorithms for this memory model are in gross
and in subtle ways different from flat-memory algorithms.

e Algorithmic granularity is important to consider. Overall
structures can remain the same between shared-memory and
message-passing models. At some intermediate grain size,
models have to be recast for hierarchical memory. While
tuning toward specific hierarchies can appear to be a daunt-
ing task, at an appropriate grain size, machine specifics can
be left to libraries and compilers.

41

e With the advent of DSM and ccNUMA, it is now a well-posed
problem whether shared-memory or message-passing is the
better programming model.

Bibliography

Designing and Building Parallel Programs: an online textbook by Ian
Foster. http://www.mcs.anl.gov/dbpp/text/book.html

Highly Parallel Computing, Almasi and Gottlieb.

Parallel Computer Architecture: A Hardware/Software Approach, Culler
and Singh.

In search of clusters, Pfister.

Solving Problems on Concurrent Processors, vol 1.: General Techniques
and Regular Problems, Fox et al.

Cray manuals!

42

